Substrate‐dependent transcriptomic shifts in Pelotomaculum thermopropionicum grown in syntrophic co‐culture with Methanothermobacter thermautotrophicus
نویسندگان
چکیده
Pelotomaculum thermopropionicum is a syntrophic propionate-oxidizing bacterium that catalyses the intermediate bottleneck step of the anaerobic-biodegradation process. As it thrives on a very small energy conserved by propionate oxidation under syntrophic association with a methanogen, its catabolic pathways and regulatory mechanisms are of biological interest. In this study, we constructed high-density oligonucleotide microarrays for P. thermopropionicum, and used them to analyse global transcriptional responses of this organism to different growth substrates (propionate, ethanol, propanol and lactate) in co-culture with a hydrogenotrophic methanogenic archaeon, Methanothermobacter thermautotrophicus (by reference to fumarate monoculture). We found that a substantial number of genes were upregulated in the syntrophic co-cultures irrespective of growth substrates (including those related to amino-acid and cofactor metabolism), suggesting that these processes were influenced by the syntrophic partner. Expression of the central catabolic pathway (the propionate-oxidizing methylmalonyl-CoA pathway) was found to be substrate-dependent and was largely stimulated when P. thermopropionicum was grown on propionate and lactate. This finding was supported by results of growth tests, revealing that syntrophic propionate oxidation was largely accelerated by supplementation with lactate. These results revealed that P. thermopropionicum has complex regulatory mechanisms that alter its metabolism in response to the syntrophic partner and growth substrates.
منابع مشابه
Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus.
A thermophilic syntrophic bacterium, Pelotomaculum thermopropionicum strain SI, was grown in a monoculture or coculture with a hydrogenotrophic methanogen, Methanothermobacter thermautotrophicus strain DeltaH. Microscopic observation revealed that cells of each organism were dispersed in a monoculture independent of the growth substrate. In a coculture, however, these organisms coaggregated to ...
متن کاملMethane Production from Formate by Syntrophic Association of Methanobacterium bryantii and Desulfovibrio vulgaris JJ.
Coculture of a sulfate-reducing bacterium, when grown in the absence of added sulfate, with Methanobacterium bryantii, which uses only H(2) and CO(2) for methanogenesis, degraded formate to CH(4). A pure culture of Desulfovibrio vulgaris JJ was able to produce small amounts of H(2). Such a syntrophic relationship might provide an additional way to avoid formate accumulation in anaerobic environ...
متن کاملOperation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum.
Thermacetogenium phaeum is a homoacetogenic bacterium that can grow on various substrates, such as pyruvate, methanol, or H2/CO2. It can also grow on acetate if cocultured with the hydrogen-consuming methanogenic partner Methanothermobacter thermautotrophicus. Enzyme activities of the CO dehydrogenase/acetyl coenzyme A (CoA) pathway (CO dehydrogenase, formate dehydrogenase, formyl tetrahydrofol...
متن کاملComparative Proteomic Analysis of Methanothermobacter themautotrophicus ΔH in Pure Culture and in Co-Culture with a Butyrate-Oxidizing Bacterium
To understand the physiological basis of methanogenic archaea living on interspecies H(2) transfer, the protein expression of a hydrogenotrophic methanogen, Methanothermobacter thermautotrophicus strain ΔH, was investigated in both pure culture and syntrophic coculture with an anaerobic butyrate oxidizer Syntrophothermus lipocalidus strain TGB-C1 as an H(2) supplier. Comparative proteomic analy...
متن کاملPhysiological and Transcriptomic Analyses of the Thermophilic, Aceticlastic Methanogen Methanosaeta thermophila Responding to Ammonia Stress
The inhibitory effects of ammonia on two different degradation pathways of methanogenic acetate were evaluated using a pure culture (Methanosaeta thermophila strain PT) and defined co-culture (Methanothermobacter thermautotrophicus strain TM and Thermacetogenium phaeum strain PB), which represented aceticlastic and syntrophic methanogenesis, respectively. Growth experiments with high concentrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2009